Search results for "extreme minimal learning machine"

showing 2 items of 2 documents

Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression

2020

Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methods, the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM), in problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential, emphasizing the utility of the problem transformation especially with the EMLM. peerReviewed

the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM)koneoppiminenemphasizing the utility of the problem transformation especially with the EMLM.Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methodsin problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential
researchProduct

Extreme minimal learning machine: Ridge regression with distance-based basis

2019

The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an addit…

0209 industrial biotechnologyComputer scienceCognitive Neuroscienceneuraalilaskentaneuroverkot02 engineering and technologyrandomized learning machinesSet (abstract data type)extreme learning machine020901 industrial engineering & automationArtificial Intelligenceextreme minimal learning machine0202 electrical engineering electronic engineering information engineeringExtreme learning machineta113Training setBasis (linear algebra)Model selectionminimal learning machineOverlearningComputer Science ApplicationskoneoppiminenTransformation (function)020201 artificial intelligence & image processingAlgorithmNeurocomputing
researchProduct